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න
Ω

∗ ∗ 𝑑𝜔𝑖𝐿𝑟 𝑥 → 𝜔𝑜 = න
Ω

𝑉 𝑥 ← 𝜔𝑖 ∗ ෨𝐿 𝑥 ← 𝜔𝑖 ∗ ෤𝜌 𝑥, 𝜔𝑖 , 𝜔𝑜 𝑑𝜔𝑖𝐿𝑟 𝑥 → 𝜔𝑜 =

𝐿𝑟(𝑥 → 𝜔𝑜)

𝑉(𝑥 ← 𝜔𝑖)

𝜌(𝑥, 𝜔𝑖 , 𝜔𝑜)
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𝑉 𝑥 ← 𝜔𝑖
෨𝐿 𝑥 ← 𝜔𝑖

෨𝐿(𝑥 ← 𝜔𝑖)

𝑥

Ω

෤𝜌 𝑥, 𝜔𝑖 , 𝜔𝑜
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𝐿𝑟 𝑥 → 𝜔𝑜 = න
Ω

𝑉 𝑥 ← 𝜔𝑖 ∗ ෨𝐿 𝑥 ← 𝜔𝑖 ∗ ෤𝜌 𝑥, 𝜔𝑖 , 𝜔𝑜 𝑑𝜔𝑖

න
Ω

∗ ∗ 𝑑𝜔𝑖

visibility map BRDF sliceenvironment map
rendered image

Forward 
Rendering

Relighting න
Ω

∗ ∗ 𝑑𝜔𝑖

visibility map environment map BRDF slice

relit image
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1. Relighting of Virtual Objects 2. Relighting of Real Objects

Representations and Algorithms for Interactive Relighting
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Key Challenges

1. Texture-illumination ambiguity

2. Simulation of light propagation
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Triple Product Integral

𝐿𝑟 𝑥 → 𝜔𝑜 = න
Ω

𝑉 𝑥 ← 𝜔 ∗ ෨𝐿 𝑥 ← 𝜔 ∗ ෤𝜌 𝑥, 𝜔, 𝜔𝑜 𝑑𝜔

= න
Ω

∗ ∗ 𝑑𝜔

=෍

𝑖

෍

𝑗

෍

𝑘

𝑉𝑖 ෨𝐿𝑗 ෤𝜌𝑘𝐶𝑖𝑗𝑘
triple product

binding coefficients

pixel domain

= න
Ω

∗ ∗ 𝑑𝜔෍

𝑖

𝑉𝑖 Ψ𝑖 (𝜔) ෍

𝑗

𝐿𝑗 Ψ𝑗(𝜔) ෍

𝑘

෤𝜌𝑘 Ψ𝑘 (𝜔)
new basis 

representation

𝐶𝑖𝑗𝑘 = න
𝛺

𝛹𝑖(𝜔)𝛹𝑗(𝜔)𝛹𝑘(𝜔)𝑑𝜔
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Spherical Harmonics

• Original approach [Sloan et al., 2002]

• Equivalent of Fourier series on the sphere

• Set of orthogonal functions

• Linear combination of sine and cosine waves

+ Efficient

- Low-frequency lighting effects only
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2D Haar Wavelets

• Haar Tripling Coefficient Theorem [Ng et al., 2004]

• Piecewise constant functions

• Orthonormal basis

+ Few coefficients

+ All-frequency lighting
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Proposed Representations

1. High-Order Wavelets

2. Spherical Radial Basis Functions
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Why high-order wavelets?

• Representation should be tailored to the signal

• Smooth high-order wavelets (e.g. Daubechies-4) require an order 
of magnitude less coefficients to represent a smooth signal
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Why is it so difficult to use high-order wavelets?

𝐶𝑖𝑗𝑘 = න
𝛺

𝛹𝑖(𝜔)𝛹𝑗(𝜔)𝛹𝑘(𝜔)𝑑𝜔

නΨ𝐻1 ∗ Ψ𝐻2 ∗ Ψ𝐻3 0 0 -1

Ψ𝐻1

same dilation, 
same position

same dilation, 
different position

different dilation,
different position

Ψ𝐻2

Ψ𝐻3

Haar wavelets tensor of binding coefficients
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නΨ𝐷1 ∗ Ψ𝐷2 ∗ Ψ𝐷3 -0.0115 0.0038 -0.0209

Ψ𝐷1

same dilation, 
same position

same dilation, 
different position

different dilation,
different position

Ψ𝐷2

Ψ𝐷3

Why is it so difficult to use high-order wavelets?

𝐶𝑖𝑗𝑘 = න
𝛺

𝛹𝑖(𝜔)𝛹𝑗(𝜔)𝛹𝑘(𝜔)𝑑𝜔

Daubechies wavelets tensor of binding coefficients
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• Naive approach

• Hierarchical approach

• Symmetry

• Wavelet sliding

• Vanishing moments

Test example
• 𝐷: dimensionality of the integral 

(double, triple, quadruple)

• 𝑆𝑖: signal of r x r resolution (𝑖 = 1,⋯ , 𝐷)

• 𝑁: number of dilations and translations 
of the basis function for 𝑆𝑖

General Wavelet Tripling Coefficient Theorem
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• Naive approach
• Iterate over all binding coefficients

• 𝑂(𝑁𝐷𝑟2)

• 𝟒, 𝟕 × 𝟏𝟎𝟐𝟏 operations 

• 𝑟 = 512, 𝑁 = 262144, 𝐷 = 3

General Wavelet Tripling Coefficient Theorem
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Ψi=4 Ψi=12 Ψi=21Ψi=4 Ψi=12 Ψi=21

Ψj=max

Ψj=0

• Hierarchical approach
• Exploiting support of wavelet

• Non-overlapping cases can be skipped

• 𝑂(𝑁𝐶 (log𝑁)𝐷−1 𝑟2)
• 𝐶 relates to the enlargement of support

• 𝟑, 𝟐 × 𝟏𝟎𝟏𝟑 operations

• 𝑟 = 512, 𝑁 = 262144, 𝐷 = 3

General Wavelet Tripling Coefficient Theorem

Daubechies waveletsHaar wavelets
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• Symmetry
• Homogeneous products

• Ψ𝑖Ψ𝑗׬ Ψ𝑗Ψ𝑖׬=

General Wavelet Tripling Coefficient Theorem

Ψ𝐷𝑗

Ψ𝐷i 𝑗 ≥ 𝑖
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• Wavelet sliding
• Reuse duplicate branches in the tensor

General Wavelet Tripling Coefficient Theorem

slide factor S

… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … …

𝑗 ≥ i

𝑗 < i

Ψi=x branch Ψi=𝑦 branch

slide factor S = y − x × support(Ψi=x)

Ψi=x branch
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• Wavelet sliding
• Reuse duplicate branches in the tensor

• Calculate products for log𝑁 branches instead of 𝑁 branches

• 𝑂(𝐶 (log𝑁)𝐷 𝑟2)
• 𝐶 relates to the enlargement of support

• 𝟏, 𝟓 × 𝟏𝟎𝟗 operations

• 𝑟 = 512, 𝑁 = 262144, 𝐷 = 3

General Wavelet Tripling Coefficient Theorem
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• Vanishing moments
• High-order wavelets provide more vanishing moments

• Causes zero integrals for certain translations within their support

• Increased sparsity in tensor of binding coefficients

• Identified and incorporated in wavelet sliding algorithm

General Wavelet Tripling Coefficient Theorem
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Sparseness – 8 × 8

𝚿𝒊 𝚿𝒋 𝚿𝒌 resolution non-zero coeffs total coeffs sparseness

Haar-2 Haar-2 Haar-2 8 × 8 1288 2.6E+5 0.4913%

Daub-4 Daub-4 Daub-4 8 × 8 99088 2.6E+5 37.7991%

Daub-6 Daub-6 Daub-6 8 × 8 214252 2.6E+5 81.7307%

Coiflet-5 Coiflet-5 Coiflet-5 8 × 8 186706 2.6E+5 71.2227%

Haar-2 Daub-4 Daub-4 8 × 8 31960 2.6E+5 12.1918%

Haar-2 Coiflet-5 Coiflet-5 8 × 8 59902 2.6E+5 22.8508%
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Sparseness - 16 × 16

𝚿𝒊 𝚿𝒋 𝚿𝒌 resolution non-zero coeffs total coeffs sparseness

Haar-2 Haar-2 Haar-2 16 × 16 1288 1.6E+7 0.0443%

Daub-4 Daub-4 Daub-4 16 × 16 99088 1.6E+7 8.2263%

Daub-6 Daub-6 Daub-6 16 × 16 214252 1.6E+7 25.9928%

Coiflet-5 Coiflet-5 Coiflet-5 16 × 16 186706 1.6E+7 20.8433%

Haar-2 Daub-4 Daub-4 16 × 16 31960 1.6E+7 1.6133%

Haar-2 Coiflet-5 Coiflet-5 16 × 16 59902 1.6E+7 3.7315%
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Sparseness - 32 × 32

𝚿𝒊 𝚿𝒋 𝚿𝒌 resolution non-zero coeffs total coeffs sparseness

Haar-2 Haar-2 Haar-2 32 × 32 38920 1.1E+9 0.0036%

Daub-4 Daub-4 Daub-4 32 × 32 9720040 1.1E+9 0.9052%

Daub-6 Daub-6 Daub-6 32 × 32 29582032 1.1E+9 2.7550%

Coiflet-5 Coiflet-5 Coiflet-5 32 × 32 16408816 1.1E+9 1.5282%

Haar-2 Daub-4 Daub-4 32 × 32 1555120 1.1E+9 0.1448%

Haar-2 Coiflet-5 Coiflet-5 32 × 32 2715112 1.1E+9 0.2529%
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Sparseness - 64 × 64

𝚿𝒊 𝚿𝒋 𝚿𝒌 resolution non-zero coeffs total coeffs sparseness

Haar-2 Haar-2 Haar-2 64 × 64 192520 6.9E+10 0.0003%

Daub-4 Daub-4 Daub-4 64 × 64 47918464 6.9E+10 0.0697%

Daub-6 Daub-6 Daub-6 64 × 64 145473456 6.9E+10 0.2117%

Coiflet-5 Coiflet-5 Coiflet-5 64 × 64 48918464 6.9E+10 0.0712%

Haar-2 Daub-4 Daub-4 64 × 64 7327168 6.9E+10 0.0107%

Haar-2 Coiflet-5 Coiflet-5 64 × 64 8699044 6.9E+10 0.0127%
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0,0940 0,0570 0,0424L2 norm:

Render Application

Daubechies-6 waveletsHaar wavelets
0,06560,1029 0,0502 L2 norm:

16 coeffs 64 coeffs 128 coeffs ground truth16 coeffs 64 coeffs 128 coeffs ground truth

16 coeffs 64 coeffs 128 coeffs ground truth16 coeffs 64 coeffs 128 coeffs ground truth
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What Is Wrong with Wavelets?

• 2D Haar wavelets [Ng et al, 2004]

• Spherical Haar wavelets [Put et al., 2014]

• High-order wavelets [Michiels et al., 2014]

+ Few coefficients

+ All-frequency

- Preprocessing

- No efficient rotation operator [Wang et al., 2006]

𝑍

𝑥
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Contributions

1. High-Order Wavelets

2. Spherical Radial Basis Functions
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Spherical Radial Basis Functions (SRBFs)

• Radial Basis Functions, defined on the sphere

• Poisson(ω, 𝒄, λ, μ) = μ
1−λ2

(1−2λ ω∙𝒄 +λ2) ൗ3 2

• Multiquadrati𝑐(ω, 𝒄, λ, μ) = μ 1 + (λ ω ∙ 𝒄 )2

• 𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏(𝝎, 𝒄, 𝝀, 𝝁) = 𝝁𝒆𝝀(𝝎∙𝒄−𝟏)

+ All-frequency

+ Decent compression performance

+ Efficient rotation operator

+ Analytic evaluation of the binding coefficients

32



- Current techniques constrain one or several factors

+ Our approach is able to dynamically construct and update all three 
factors 

Triple product rendering with SRBFs
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- Sampled in pixel domain for 
each BRDF slice (𝑥, 𝜔𝑖 , 𝜔𝑜)

- On-the-fly transformation to 
wavelets

+ Directly approximated with Gaussian lobes

+ Phong, Cook-Torrance, Ward, Blinn-Phong, …

Dynamic Materials

SRBFs Previous approaches

[Wang et al., 2009]

Lambertian Diffuse Phong Glossy Phong Specular Phong

[Haber et al., 2009]
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- Rely on precomputation

- Limited to static scenes

- Ray tracing in pixel domain
[Haber et al., 2009]

- Approximated with Spherical 
Signed Distance Functions
[Wang et al., 2009]

- Projecting bounding volumes 
on hemisphere 
[Iwasaki et al., 2012]

+ Combination of PRT and voxelization

+ One-pass voxelization [Crassin and Green, 2012]

+ Mapping of visibility SRBFs to voxel cones

+ Entirely on GPU

Dynamic Visibility

Our approach (SRBFs) Previous approaches
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Ω
𝑥

𝑐𝑜𝑛𝑒

𝑣𝑜𝑥𝑒𝑙
𝑣𝑜𝑙𝑢𝑚𝑒

Dynamic Visibility – Cone tracing
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Dynamic Visibility – Mapping SRBF to Visibility Cone

• Sampling of visibility in the SRBF lobe

• Mapping SRBF to a corresponding visibility cone

0.5

-α α0 3λ-3λ

𝐺 = 𝑒𝜆(cos 𝛼 −1)

solid angle 𝜋−𝜋

𝐺 = 𝑒𝜆(cos 𝛼 −1) = 0.5

⇔ 𝛼 = cos−1
log(0.5)

𝜆
+ 1
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Dynamic Visibility – Subsampling Scheme

• Subsampling of SRBF lobe is essential
• Avoid integration of high-frequency visibility detail over larger area of the 

hemisphere

• Circle packing: maximize density of subsampled cones

• Adaptive subsampling based on BRDF lobe

Lambertian Glossy BRDF Specular BRDF
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+ HDR omnidirectional photo/video

+ SRBF fitting

+ Multi-scale algorithm using fixed grid

+ SRBF centers defined by Healpix distribution

+ Entirely on GPU

Dynamic Lighting

Our approach (SRBFs) Previous approaches

- Optimization [Tsai and Shih, 2006]

+ Good compression

- Slow

- Least-square projection
[Lam et al., 2010]
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Dynamic Lighting

…

- - - -

+ + + +
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inceasing number of SRBF levels

• Multi-scale residual transform

12 SRBFs0 SRBFs 60 SRBFs 252 SRBFs 1020 SRBFs
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Overlapping Lighting SRBFs

BRDF SRBF visibility SRBFs

න
𝛺

lighting SRBFs

× ×
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Overlapping Lighting SRBFs

𝜑

𝜃

𝜑

𝜃

𝜃

𝜑

…

…

bins for BRDF position BRDF slice overlapping SRBS per environment map level
# levels dependent on BRDF lobe
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Peak Detection

- Problem: bright area light sources
• Requires too fine-grained subsampling of visibility cones

+ Solution: peak detection
• Treated as a special case

• Thresholding / connected components / fitting

environment map connected components SRBF fitting rendering
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Results
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Results
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Results
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1. Relighting of Virtual Objects 2. Relighting of Real Objects

Relighting Use Cases
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Relighting of Virtual Objects
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Relighting of Virtual Objects
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1. Relighting of Virtual Objects 2. Relighting of Real Objects

Relighting Use Cases
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Relighting of Real Objects

• Inverse rendering using wavelets [Haber et al., 2009]

• Hierarchical refinement using smooth high-order wavelets

input image

environment map
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Relighting of Real Objects

• Inverse rendering using wavelets [Haber et al., 2009]

• Hierarchical refinement using high-order wavelets

• Temporal information

input
sequence

reconstructed
sequence

relit with Uffizi 
environment map
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Relighting of Real Objects

• Inverse rendering using wavelets [Haber et al., 2009]

• Hierarchical refinement using high-order wavelets

• Temporal information

• Near-field lighting

HDR input images reconstruction
near-field relighting

change color
distant and near-field 

relighting

ca
m

e
ra

 1
ca

m
e
ra

 2

extracted 
geometry

near-field relighting
change position

camera 2
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Relighting of Real Objects

• Inverse rendering using wavelets [Haber et al., 2009]

• Hierarchical refinement using high-order wavelets

• Temporal information

• Near-field lighting

• Inverse rendering using SRBFs [Haber et al., 2009]
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…

𝑀𝑥 𝑌

2

-

… …

min
𝑥

→ 𝑥

input
images

lighting SRBFs

𝑥 ←

quadratic optimization
UV map

material weights

linear combination
BRDF weights

𝑥 ←

reconstructed
images

Relighting of Real Objects - Inverse Rendering using SRBFs
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Relighting of Real Objects - Inverse Rendering using SRBFs

Haar wavelets 
[Haber et al., 2009]

SRBF 
[ours]

# lighting coefficients 1024 𝟏𝟎𝟐𝟎

∆𝑡 optimize lighting 1089 s 𝟏𝟎 𝐬

# BRDF weights 2689
(per vertex)

𝟗𝟎𝟔𝟐𝟒𝟎
(per texel)

∆𝑡 optimize BRDF weights 3 s 𝟏𝟖𝟎 𝐬

∆𝑡 optimize one BRDF 
weights

9.4 × 10−4 s 𝟏. 𝟗 × 𝟏𝟎−𝟒 𝐬

∆𝑡 full optimization 184 min 𝟐𝟗𝐦𝐢𝐧

∆𝑡 rendering reconstruction 13.403 s < 𝟎. 𝟏 𝐬

Haar wavelets
[Haber et al., 2009]

SRBFs
[ours]
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Conclusions

• General triple product theorem for high-order wavelets
+ Triple product rendering for a mixture of different wavelets bases

+ Wavelets tailored to the signal

+ Few coefficients to estimate

- Rather slow

• Dynamic triple product rendering using SRBFs
+ Interactive and real-time triple product rendering

+ All three factors are dynamic

+ Preview rendering of estimates

- Slightly more coefficients: quality/speed tradeoff
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Take Home Messages

• Underlying representation does have an impact on relighting 
applications
• Representation tailored to the signal

• Representation tailored to the application

• Compression/time tradeoff
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Thank you for your attention!
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Thank you for your attention
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High-Order Wavelets in Render Application

Daubechies-6 waveletsHaar wavelets
0,08030,0990 0,0542𝐋𝟐 norm:

16 coeffs 32 coeffs 128 coeffs ground truth

0,0921 0,0717 0,0475𝐋𝟐 norm:

16 coeffs 32 coeffs 128 coeffs ground truth

61



High-Order Wavelets in Render Application
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High-Order Wavelets in Render Application
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+ Analytic Evaluation of the binding coefficients

Triple product rendering with SRBFs

𝚿𝒊,𝒋,𝒌 = 𝑮(𝝎, 𝒄, 𝝀, 𝝁) = 𝝁𝒆𝝀(𝝎∙𝒄−𝟏)𝐶𝑖𝑗𝑘 = න
𝛺

𝛹𝑖(𝜔)𝛹𝑗(𝜔)𝛹𝑘(𝜔)𝑑𝜔

= න
𝛺

𝐺 ω, 𝒄𝑉 , λ𝑉 , μ𝑉 𝐺 ω, 𝒄𝐿, λ𝐿, μ𝐿 𝐺(ω, 𝒄𝜌, λ𝜌, μ𝜌)𝑑𝜔

= μ𝑉μ𝐿μ𝜌𝑒
−(λ𝑉+λ𝐿+λ𝜌)න

𝛺

𝑒ω⋅(λ𝑉𝒄𝑉+λ𝐿𝒄𝐿+λ𝜌𝒄𝜌)𝑑𝜔

= μ𝑉μ𝐿μ𝜌𝑒
−(λ𝑉+λ𝐿+λ𝜌)4𝜋

sinh λ𝑉𝒄𝑉 + λ𝐿𝒄𝐿 + λ𝜌𝒄𝜌

λ𝑉𝒄𝑉 + λ𝐿𝒄𝐿 + λ𝜌𝒄𝜌
[Tsai and Shih, 2006]
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Rotation Operator

𝑍

𝑥
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Overlapping Lighting SRBFs

bin level BRDF 𝝀 # bins mean # overlapping 
SRBFs

max level

1 2,0 45 60 1

2 4,0 153 252 2

3 16,0 561 312 3

4 32,0 2145 608 4

5 128,0 2145 182 5

6 256,0 8320 109 5

7 512,0 33153 70 5
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Dynamic Visibility – Voxel Density

64 increasing voxel volume 512
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Dynamic Visibility – Voxel Density

64 increasing voxel volume 512
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Dynamic Lighting
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Peak Detection

without peak detection with peak detection
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Relighting of Real Objects - Inverse Rendering using SRBFs

Haar wavelets 
[Haber et al., 2009]

SRBF 
(ours)

input resolution 960 × 540 960 × 540

# images 5 5

# vertices 2689 2689

# lighting coefficients 1024 1020

#materials 3 3

# BRDF weights 𝟐𝟔𝟖𝟗 (per vertex) 𝟗𝟎𝟔𝟐𝟒𝟎 (per texel)

∆𝑡 optimize lighting 1089.340 𝑠 10.189 𝑠

∆𝑡 optimize materials 2.516 𝑠 6.973 𝑠

∆𝑡 optimize BRDF weights 2.518 𝑠 180.837 𝑠

∆𝑡 optimize one BRDF weights 𝟏. 𝟑𝟔 × 𝟏𝟎−𝟒 𝒔 𝟏. 𝟗𝟗 × 𝟏𝟎−𝟒 𝒔

∆𝑡 one iteration 1099.680 𝑠 201.240 𝑠

∆𝑡 full optimization 184 min 29 min

∆𝑡 rendering reconstruction 𝟏𝟑. 𝟒𝟎𝟑 𝒔 𝟎. 𝟎𝟐𝟐 𝒔
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Relighting of Real Objects – Intrinsic Image Decomposition

• Intrinsic images decomposition using SRBFs [Barron and Malik, 2015]

72

maximize
𝐺,𝑅,𝐿

𝑃 𝐺 𝑃 𝑅 𝑃(𝐿)

subject to 𝐼 = 𝑅 + 𝑆(𝐺, 𝐿)

relighting

input normals albedo shading lighting

diffuse glossy specular

decomposition



Relighting of Virtual Objects [AIVIE, 2014]
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Relighting of Real Objects [ICT-FP7 SCENE, 2014]
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