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Recent advances in machine learning have enabled the recognition of high-level 
categories of materials with a reasonable accuracy. With these techniques, we can 
construct a per-pixel material labeling from a single image. We observe that groups of 
high-level material categories have distinct chromaticity distributions. This fact can be 
used to predict the range of the absolute chromaticity values of objects, provided the 
material is correctly labeled. We explore whether these constraints are useful in the 
context of the intrinsic images problem. This poster describes how to leverage material 
category identification to boost estimation results in state-of-the-art intrinsic images 
datasets.

• The observation that areas with different materials form distinct subsets within the 
space of chromaticity distributions.

• A prior that relates a chromaticity distribution, associated with a specific material 
category, with possible reflectance values of an object.

• A novel combination of existing techniques: we use material classification to 
construct a material-specific chromaticity prior. This is useful for intrinsic image 
decomposition to improve the estimation of reflectance values.
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Recent deep learning techniques can predict material labels at every pixel using a 
combination of a sliding convolutional neural network and a fully connected conditional 
random field [1]. They achieve a mean class accuracy of 85.9%.
We use the open source framework of Barron et al. [3] to implement our chromaticity prior 
in an intrinsic image decomposition framework.
A lot of work has been put into constructing large and diverse material databases, such as 
MINC [1] and OpenSurfaces [2]. However, these do not contain ground truth intrinsic 
image data, which is extremely hard to come by. We evaluate our prior on the only dataset 
known to us that has ground truth intrinsic decomposition data for real objects [4].
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Heatmap plots of chromaticities in YUV 
color space from random samples of 
training datasets. Blue represents UV 
values that are the least frequent, red 
those that are the most frequent. The 
OpenSurfaces dataset is a more 
accurate representation of real-world 
materials.

Various subgroups of materials have different characteristics. Plastic has a much wider range of 
chromaticity values than sky. Wood spans a limited range of unsaturated colors, while metal has 
quite a few outliers due to strong specular reflections.
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Input images courtesy of Barron et et. [3]
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