Inverse rendering and relighting applications

Nick Michiels

Jeroen Put

Tom Haber

Relighting

• $B(x,\omega_o) = \int_{\Omega} V(x,\omega_i) \rho(x,\omega_i,\omega_o)(\omega_i \cdot n(x)) L(x,\omega_i) d\omega_i$

Source: http://http.developer.nvidia.com/GPUGems3/gpugems3_ch20.html

Relighting

From 2D to the spherical domain

Octahedron parameterisation

linds

Relighting

Inverse Rendering

- Computer vision <-> computer graphics
 - Reflected light = convolution of lighting and BRDF
 - Inverse rendering = deconvolution

Source: http://http.developer.nvidia.com/GPUGems3/gpugems3_ch20.html

 $B(x,\omega_o) = \int_{\Omega} V(x,\omega_i) \,\rho(x,\omega_i,\omega_o)(\omega_i \cdot n(x)) L(x,\omega_i) \,d\omega_i$

universiteit hassel

Goal

iMinds

Relighting Objects from Image Collections, Haber, 2009

Results

Results

Why is it difficult?

• Image <-> array of pixels

	38	36	34	33	29	25	25
	88	87	85	84	80	75	72
	117	116	117	117	115	113	111
	119	118	119	119	120	120	119
	126	125	123	122	123	125	124
	127	127	126	124	123	125	127
	111	110	115	111	110	113	116
	88	90	88	88	88	89	91
	72	74	73	73	74	74	74
	59	61	62	63	64	64	64
	56	58	52	54	56	57	57

Colour constancy

Brightness illusions

Why is it difficult?

• Material-lighting ambiguity

Why is it difficult?

• Problem has a high dimensionality

- Material info is 6D
 - Incident light direction (2D)
 - Viewing direction (2D)
 - Position (2D)

So what can we expect to recover?

- Depends on the assumptions we make (Ramamoorthi, 2001)
 - BRDF known / lighting unknown
 - Lighting known / BRDF unknown
 - Both factors unknown
- Studies various cases
 - Factorised lighting
 - Spherical harmonics used as mathematical tool
 - ~ Fourier series on the sphere
 - Recoverable frequencies proved
- Ringing / Low frequency only

General conclusion

- In order to have high frequencies in the result, you need to have high frequencies in the BRDF and illumination factor
- Estimating high frequency BRDF requires high frequency lights
- Estimating high frequency lights requires high frequency BRDF
- Unsolved problem: solution only unique up to a scale factor
 - smoothness factor

Choosing a good representation

$$B(x,\omega_o) = \sum_{i} \sum_{j} \sum_{k} V_i \tilde{L}_j \rho_k C_{ijk} \quad with \ C_{ijk} = \int_{\Omega} \Psi_i(\omega_i) \Psi_j(\omega_i) \Psi_k(\omega_i) d\omega_i$$

Triple product integral

$$B = \int_{S^2} L(\omega) V(\omega) \tilde{\rho}(\omega) d\omega$$

=
$$\int_{S^2} \left(\sum_i L_i \Psi_i(\omega) \right) \left(\sum_j V_j \Psi_j(\omega) \right) \left(\sum_k \tilde{\rho}_k \Psi_k(\omega) \right) d\omega$$

=
$$\sum_i \sum_j \sum_k L_i V_j \tilde{\rho}_k \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) d\omega$$

=
$$\sum_i \sum_j \sum_k L_i V_j \tilde{\rho}_k C_{ijk}$$

Triple Product Wavelet Integrals for All-Frequency Relighting, Ren Ng, Ravi Ramamoorthi, Pat Hanrahan, SIGGRAPH 2004

Relighting Objects from Image Collections

Choosing a good representation

- Wavelets
 - 2D-haar
 - Spherical / high-order wavelets
- Spherical Radial basis functions (SRBFs)
 - ~ mixture of Gaussians
- Eigenbases

Haar wavelet representation

- Compact
 - Localised in spatial and frequency domain
- Supports high frequencies
- Fast triple product (Ng. et al, 2004)

$$B(x,\omega_o) = \sum_i \sum_j \sum_k V_i \tilde{L}_j \rho_k \int_{\Omega} \Psi_i(\omega_i) \Psi_j(\omega_i) \Psi_k(\omega_i) d\omega_i$$

• Reasonably fast rotation method (Wang et al, 2006)

What is \tilde{L} ?

- Rotated version of lighting
- Wavelet coefficients rotated by precalculated sparse rotation matrices
- O(N), N = number of sparse wavelet coefficients

Universiteit

nds

EDM

Precalculated rotation matrices

High-level algorithm overview

Estimation of Haar wavelet coefficients

Problem statement

How do we solve the problem?

- Fundamentally underconstrained!
- Approximate best solution with Quadratic Optimisation
 - Fast primal-dual interior point solver : OOQP (Gertz, 2003)

Solution conditions

- The Quadratic problem is convex and has a unique global optimum
 - Can be proved
- However, local minimum still possible in bilinear problem
 - Alternating between L and ρ suboptimal

Trade-offs

- Static lighting vs varying lighting
- Single- vs multi-view
- Haber et al. [HFB+09]
 - All frequency wavelet framework
 - Incident illumination per image
 - Reflectance per surface point

Future work

- Support for local lighting
 - Most techniques require light at infinity
 - Hard to estimate lights inside the scene
 - different lighting information per pixel
 = too much data!
- Support for indirect lighting
 - Currently ignored in equations

Papers to read

- A signal processing framework for inverse rendering, Ramamoorthi, 2001
- Relighting objects from image collections, Haber et al, 2009

Expect high-level questions about the algorithms/processes on exam

Questions?

